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A COMPARISON OF THE EXPERIMENTAL SUBSONIC PRESSURE DISTRIBUTIONS ABOUT
SEVERAL BODIES OF REVOLUTION WITH PRESSURE DISTRIBUTIONS .

COMPUTED BY MEANS OF THE LINEARIZED THEORY 1
.

By CLARENCEW. MAIITHEIWS

SUMMARY

An anu@i.s G made of the ejea% of comprewibi.liiy on the
prw-ure co$jki.em%aboui severfdi50dti oj nwohdion by com-
paring experimentally determined prixmwe coejicimi% with
corresponding pnwure coem cdwik%d bythemeoj the
lineariad eqUZ&W Of COmpTWibkI?OW. The r& 8hOW
that the theoreticu-1metluxk predict the subsonic premure-
coejicient chunges over the cenlnd part of the body but do not
predict tlk premure-coejicient chunge8 near the no8e. Ex-
trapolation of the linearized wdkmnic i!heoy into the mixed
sub80n2’c+uperwrvicjkno region faik to predict a rearward
mommimiof the mgative premwe-coejicitmi peak which occurg
after the critical dream Mach number Juubeat atluined. Tw
equaiiona dtieloped from a cOm?i&r@iOnof the &ub80niccom-
pre.wible @w abowt a prok.k7 8pheroid are shown to predict,
approximaklyl the change with Mach number of the ML/Monk
premure Coe$k?i-etifor regular boditx of revoltiion of jiwnem
ratw 6 or greder.

INTRODUCTION

A number of papers have been published concerning the
theoretical aapect of the effects of compressibility on the
flow over bodies of revolution (refs. 1 to 4). In the present
investigation these theoretical methods are applied to the
analysis of experimental data. Such an analysis should
contribute to the basic knowledge of subsonic three-
dimensional flow.

Two prolate spheroids of iinencss ratios 6 and 10, an ogival
body, and a prolate spheroid with an annular bump near the
nose were tested in this investigation. The experimental
pressuresabout the two prolate spheroids are compared with
the pressures computed by the linearized compressible-flow
theory. Several relations developed from theoretical con-
siderations of the flow about a prolata spheroid are presented
for correcting the incompressible pressure CmfEcients of
regular bodies of finenem ratios 6 to 10 for the effects of
comprtwibility in the subcritical flow range. Results
obtained from these relations are also compared with corre-
sponding experimental preswre coefficients.
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fineness ratio of body, l/2b
total length of body (see fig. 1)
critical Mach number
free-strwn Mach number
local static pre9sure
free+kream static presure

pressure coefficient, ~
~ Pva

local radius of body
cross-sectional area of body of revolution
component of local veloci~ parallel to free stream
free-strewn velocity
component of local velocity in vertical plane perp~-

dicular to free stream
total local velocity
component of local velocity perpendicular to u and o
coordinate along major axis of body
angle of attack

‘r ratio of specific heat at constant pr-e to specific
heat at constant volume

P density
v velocity potential
% r, ~ ellipsoidal coordinates (see ref. 5)

Subscripts:
c comprcsaible value
i incompressible value
or miticd value
8t incompressible value

stretched body
of flow about hypothetical

MODELS

Sketches of the bodies of revolution tested, which show
the locations of the pressure orifices and other pertinent
details, are presented in @e 1. The otiat~ of Me
typical transonic or ogival body and the prolate spheroid
with an annulm bump are given in table I. The ordinatw
of the section of the sting support, which is a part of the
body of revolution, are those of a prolate spheroid of iineness
ratio 6. The same support was used for each body. The
couplings used to change the angle of attack were mounted
in the sting 11 inches downstream from the end of the body.
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(a) Prolate spheroid; j-6.
~%) Prolate ~~heroid; ~= 10.
(c)Typicsd transonio body-
(d) Prolate spheroid with annular bump.
(e) Angular locations of orifices.
FIGURE l.—P”mfiles of bodies tested.
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Except at the ii% three stations indicated in figures 1 (a)
to 1 (d), the pressureofi~ were located around the body as
shown in figure 1 (e). These orifices were spaced 15” apart
on one side of the body in order to obtain a fairly accurate
normal-force coefficient upon integration of the presmre
coefficients. The orifice at the fit station was located in
the nose. The ori6ces at the next two stations were located
at 90° intervals around the body. The pressure orifice
openings were 0.010 inch in diameter.

TESTS

The pressures about the bodies were measured in the
Langley 8-foot h~h-speed tunnel through the Mach number
range 0.3 to 0.95. The angle-of-attack range9 were 0° to
7.7° for the regular bodies and 0° to 2° for the prolate
spheroid with an annular bump. The pressures were re-
corded by photographing a lo-foot 100-tube manometer
board filled with acetylene tetrabromide.

.
TABLE I.—ORDINATES OF THE TYPICAL TRANSONIU
BODY AND OF THE ANNULAR BUMP PROLATE SPHEROID
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The free-stream ~resnwes and lMach numbers were deter-
mined from an e-mpty-timnel calib~ation based on the
pressures at an orifice located 4 feet upstream of the modcd.

Several preliminary plots of local pressure coefficients as
functions of free-stream Mach number showed considemblo
scatter for Mach numbers less than 0.5, probably becaum
of the d.iilicultyof reading the small pressure differences and
because of the possibility that the tunnel was not held at
each Mach number a sufficient length of time to insure com-
plete settling of tho manometer liquid. Bemuse of this
scatter, it was n’eceasary to rieglect the pressure coe5cicmts
below Mo= 0.5 in extrapolating the pressure-coefficient curves
to a stream Mach number of zero. The data used in the
analysis in this investigation were picked from tlm extra-
polated curves.

For the tests reported herein, the Reynolds number varies
h“m ‘approximately 2,700,000 per foot at MO=O.40 to
3,950,000 at MO= O.94.

The wall interference may be approximately determined
by using the equations of reference 6. Since the corrections
were small, they were not applied to the pressures in tho
figurea which present experimental data alone; however, the
corrections, even though small, were applied to tlm experi-
mental data used for the comparisons between the theoretical
and the experimental values.

THEORETICAL METHODS

The theoretical subsonic pressuresabout a prolate spheroid
may be computed by applying the Prandtl-Glauert correction
to the incompressible potential-flow equations in the manner
suggested in reference 7. In this solution of the linearized
form of the equations for compressible flow, the body is
stretched in the free-stm.amdirection by the factor 1/P; the
induced velocity components u— U, q and w about the
stzetched body are computed by potential-flow’ methods
(for prolate spheroids, see ref. 5); and the induced velocities
u— U, v, and w are corrected by the factors l/&, l/j9, and l/19,



THEORETICAL AND EXPE-NTAL SUBSONIC PRESSURES ABOUT SEVERAL BODIES OF REVOLUTION 1127

respectively. The corrected velocities are the compressible
velocities at the corresponding pointS on the original body.
The following formula, as is shown in appendix A, is the
result of the application of this method to the flow over
prolate spheroids:

,V21——=.
{U2 /3*1–=$—Kbt~ sin2w sin2 ci,g

-(H[(l-H*Y
H,,F,, ‘

)
+(Kb,, Sin* W Sin2 %+=

H,,!at 2

()–7g-- — 2Kb$, sin2 cdsin’ q,
11

where

(1)

Q,t= 1–e,12p2

0043-2’.’
‘a’’=’-tog*)-**
Kb,,= 1 –

0°4%)-22
0°=9-2’’’:2?’”‘‘ .

The pressure coe5cients may be computed from the fol-
, lowing relation:

[
1++ fi$

P,=
(k~~%-l (’)

-.

Becauso of the nature of the transformation, equation (1)
does not hold for large angles of attack (that is, where
a=sin a ceases to be a fair approximation) or for bodies
of small iineness ratio.

The comprwibility effects indicated by application of the
lirmarized theory of compressible flow to prolate spheroids,
are not apparent from equations (1) and (2). The effects
may be shown simply for the special case of the center of a
prelate spheroid at zero angle of attack. . & shown in
appendix B, the following relation is obtained:

P*
(

log fl
)L1-+ l-log ‘f

y–log ‘f
z= –&(log ‘j–log #?)1

-(3)

Thus, the theoretical solution indicates that the ratio of the
compressible pressure coefficient to the incompressible prea-
mre coe5cient on bodiw of revolution will vary conformably

with a function of log /3andj rather than with l/fl as in two-
dimensional flow. Equation (3) may be reduced to the form

2=1+ ‘OgB
1–log ‘f

which is presented in reference 8.

Another and &sier method of obtainii an approtiate
solution of the linearized equations for very thin bodies may
be found in referencw 2 to 4. This method consists of in-
tegrating, an approximated source-sink distribution to ob-
tain the induced-velocity ratios from which the pressure
coefficients may be computed. Since the source-sink dis-
tribution is approximated by the derivative of the cross-
sectional area with respect to the length of the body, this
method is more generally applicable to bodies of revolution
than is the method of applying the l?randtl-Glauert correc-
tion to the exact incompressible-flow solution. It is shown
in appendix A that, for prelate spheroids at zero angle of
attack, this method gives the following result:

r“

(4)

Two approximate forms which show the effects of com-
pressibility can be obtained from equation (4) by considering
(a) the difference, (PC–.PJ, and (b) the ratio P,/P, of the
compressible and the incompressible values. Th.=e two -

.&g
relations may be reduced to the following forms when —-

1*

()
2

is considered small with respect to 1—~ ‘r $

P.–P,=
2 log B

f2

2=1+ ‘ogB. 1–log ‘f (6)

Both relations indicate that the effect of compressibility on
the subsonic flow about a body of revolution at any given
Mach number is to lower the pressure coe%icients over a
large part of, the body. These relations for the effect of
compressibilityy are in accord with similar equations pre-
sented in references 2 and 3.

RESULTS AND ANALYSIS

Comparison OF EXPERIMENT.4L AND THEORETICAL PRESSURE
Dlt3TRtRDT10NS ,

The local pnaum-coefficient distributions are presented
in figures 2 to 6 for various values of free-stream Mach
number. Figures 7 to 9 arereplots of scme of the data of the
preceding figures corrected for wall interference, together
with r&lts of the theoretical calculations by means of
equations (2) and (4). Figures 2 to 6 show a decrease in the
experimental pressurm over the central part of the body
with increasing Mach number, as predicted by equation (5).
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However, figures 7 to 9 indicate that the linearized theory
predicts a decrease in the pressures over the entire body,
where% the experimental data show that a point on the body
exists ahead of which the pressures increase rather than
decrease. (See also figs. 2 to 6.) The lack of agreement of
the linearized theory with the mqmrimentalresults near the
nose of the body is to be expected because of the assumptions
made in its derivation, It might be pointed oui that the
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As the flow approaches and exceeds the critical stream
hfach number, a further change in the pressure distributions
occurs. This change of shape (figs. 2 to 5) is essentially a”
remwvwd movement of the negative prwure peak. The
nature of this change is emphasized in the plots for iU=O.950
of figurca 7 and 8. These iigures show that the @tied
theory does not predict the shift in peak pressures which
occurs as the flow becomes supercritical.

Tho rearwmd shift of negative pressure peaks which occurs
on the top of the body (figs. 3 (a), 4 (a), and 5 (a)) seem
to bc changed to a forward shift on the bottom of the body
(figs. 3 (c), 4 (c), and 5 (c)). It is reasonable to assume
that part or all of this forward movement of the bottom
negmtive pressure peak may be explained by the positive
pressure field which exists ahead of the under part of tlm
sting support.

A comparison of figures 7 ~d 9 shows that the linearized
theory gives better results for the body of larger hems-s
rntio, The pressures about the prolate spheroid of fineness
ratio 10 are in better agreement wiiih theory even for the
streom Mach number of 0.950 than are the pressures about

the body of fineness ratio 6. It may also be observed that
the theoretical pressurw about the prolate spheroid of iine-
ness ratio 10, which are Calculated by the two ditTerent
meihods, are in excellent agreement; thus, the9e results
show that, for bodies of fineness ratios of 10 or greater, the

simpler method of computing presaurcs presented in refer-
ences 2 to 4 is fairly reliable.

INFL~CE OF CHANGING NOSE SHAPE

The effects of changing the shape of the nose of a body
are seen by comparing figures 2 (a) and 3 with figures 2 (o)
and 5. The incompressible pressure distribution is changed
as may be expected. However, the nature of the effect of
‘compressibility’ is the same for this body as for the prolate
spheroid of fineness ratio 6. The incremental pressure
changes are ahnost the same,.and the rotation and shifts of
pressure peaks are very similar for both bodies. This com-
parison shows that the effects of compressibility do not
depend to a great extent on body shape so long as the body
does not depart from the specifications required for the
application of the linearized equations.
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FIGURE 7.— Comparison of experimental and theoretical pressur~ over a prolate spheroid of iineness ratio 6 at zero angle of attmk
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INFLUENCE OF FrNENEM EATIO

The influence of fineness ratio on the effects of compr&i-
bility maybe observed by comparing figures 2 (a) and 3 with
figures 2 (b) and 4. These figures show that increasing the
fineness ratio reduces the changes in presure caused by
varying the stream Mach number. This effect is predicted
by the linearized theory in equation (5). It may also be
obsmved that the pr~ure peaks are less prominent and do
not shift their location to the extent found for the bodies of
lower jl.neneaaratio. The changes in the shape of the pres-
sure distributions are also reduced and comparable changes
occur at higher Mach numbers. The delay ~ the ch~ge of
the shape of the pressure distribution is demonstrated by
comparing figures 7 and 9 at MO= O.95. I?or the prolate
spheroid of fineness ratio 6 a marked change in the pressure

distribution has already occurred, whereas for the body of
fineness ratio 10 the shape of the preswredistribution curve
is almost the same as at lower Mach numbem. A considera-
tion ‘of the observed effects of increasing the fineness ratio
indicates that such a ohange dd.nitely reduces the effects
of compr~ibility.

INFLUENCE OF ANGLE OF ATTACK

It maybe shoti by the &-&-the linearized theory that,
at least to a first approximation, the lift and moment forces
on a body of revolution are not ai7ectedby changes in Mach
number. (See ref. 4.) The validi@ of this prediction is
demonstrated.in figure 10 which shomj that the variation of
the normal-force coefficient with -Mach number is small for
both the j= 10 andj= 6 prolate spheroids.
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INFLUENCEOF AN ANNULARBUMP

~ stuily- of the effects of comprws.ibility on the velocities
about an infinitely long body containing surface waves (ref.
9) shows that these effects become two-dimensiomd in nature
when the length of the surface waves becomes small with
respect to the body radius. Since an annular bump on a
body of revolution approxi&ates theseconditions, the flow over
such a bump may also be expected to show two-dimensional
effects. An examination of iigures 2 (d) @d 6 shows
that the range of pressure coefficients found in the flow over
a prolate spheroid with an annular bump is of the same order-
as that found in two-dimensional flow. The two-dimensional
nature of the flow over an annular bump is further demon-
strated by comparing the pressure coe.fiicientswith the Von
IWrmfn relationship (ref. 10) for the ef&ts of compmsibil.ity
on two-dimensional flow (fig. 11). Fig&e 11 shows fair
agreement between the Von K&rm6nrelation and the experi-
mental relationships for those regions of the body where the
flow does not separate and the slope of the body is reqscmably
small; namely, the 8.33-, 11.5-, 13.6-, 16.5-, 17.9-, and 19.8-

-20 ~
I

XB
-1,8 — (percent)

0 8.33
0 11.5

-[6 — O 13.6
A 15.0
V 16.5

-[.4 -
\P

D 17.8
Cr

i’ /
a 19.8
r 27.0

\

-L2 - m 46.0

— l%e Von K6rmb

-1.0 —
relobrl

(ref. 10) -
\ ? k/ \ T

%

~- -.8 + \, \ ~ ;

6
G \
% -.6
E
~
~

t?
-.4.

3~ ‘;;
—k

-.2 —

o

~ -qii-

.2

.
.4

.6

Free-streom Mm% rwnb’er, Afo

I?IGUED11.—Experhnental prware distributions over a prolato
. spheroid with an amular bump. a=OO.

percent stations. The 15-percent station is highly irregular
and cannot be axplaincd by either two- or thee~~~ional ,
theories. The other stations are severely affected by sepam-
tion phenomena. The Von Kfirm&nrelation, however, fails
to explain the phenomena once the critical speed is esceeded.

COBRBCI’IONOF INCOMP RBSSIBLE PRMSURE DISTEIBOTIONSFOR THE
BFFE~ OF COMPRESSIEIIJTY

Equations (5) and (6) suggest that an incompressible pres-
sure distribution might be corrected for the effects of com-
pressibility by considering a pressure-inoremant typo of
function suoh as Pc—Pi or a rate-of-increase type of function
such as P@f. J-norder to show whether the effects of com-
pressibility may be expressed by such functions, a number
of the prwsurw over the regular bodies at zero anglo of
attaok have been plotted in &ure 12 in tams of PJPi and
PO–P, sgai.@ x/1and M,. Tunnel-wall corrections have
been omitted, but the omission does not affect tlm conclu-
sions. An examination of both functions shows that, oxcopt
at supercritical Mach numbers, the values of PJPi and
PC–P* are ro@ldy constant between the 25-percent and the
50-percent stations. Over the forward part of the body, the
vahms are more varkble.

,
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The PJP,” function becomes discontinuous in the neigh-
borhood of P,=O. This behavior maybe attributed to the
fact that the pressure coefficient is zero at the incompressible
stream-pressure point and, since one of the effects of com-
pressibility is to shift the stream-pressure point, discon-
tinuities maybe expected in the neighborhood of dis point.
However, since the pressures in this region are small, a wide
variation in PJPi may be petilble without serious error
“mthe corrected results.

The P.—P, correction may also be expected to become’
irregular in the region of the nose. The experimentedcurves
show that this function changes sign in the neighborhood of
the stream-pressure point so that any correction function of
this type should include the position on the body. However,
such a function cannot be obtained from the linearized
method as this method does not indicate the change of s@
shown in the experimental data.

The experimental values of PC–P, and P,/P, at tie cen-

ters of the regular bodies are compared with equations (5)
and (6) in figure 13 in order to show the validity of the pre-
diction of the effect of compressibility by the linearized
potential-flow theory. It is observed that equation (6)

26 ~ I I I I I
o f. 6; Prolote spheroid ,
0 f=6; ogFve
o f. 10; J%obte spherc+d ‘

2.2

Pyll
/

1f=6 Q=]+ 1098 /
LO— ‘— —f =10 Pi l-log 2f

——Pc/e = I/p
#

1.4 // /

/ ‘..

1.0— ~

——f= 10 n
-.08

o

&fl
f

.04 -

0 .2 .4 .6 .8. . ‘ If)
Free-sfreom Machnumber,MO

FIGUED 13.—Theoretical comprix&bility correction functious com-

pared with experimental results. a= O0; ~=50 percent.

within its limitations predicts the effects of compressibility 1
P. 1

for three-dimensional flow whereas the relation —=-~P, @
which is used to predict the compressibility effects of two-
dimensional flow, does not. It may also be observed thqt
equations (5) and (6) predict the effects of compressibility
with about the same degree of accuracy.

The correction functions are applied to s&eral incompres-
sible preswre-coefficient distributions in figure 14, which
are compared with the corresponding experimental distribu-
tions. It is shown in figure 14 (a) that increasing the fineness
ratio of the prolate spheroid from 6 to 10 or reducing the
bluntiess of the nose, which is the essentialdifference between
the ogival body and the prolate spheroid, estends the region
of ,the body for which corrections can be made from the
2@percent station for the prolat~ spheroid of fineness ratio 6
forward at least to the 10-percent station for the sharper-nose
bodies. The PJPi function expresses the effect of compres-
sibility more accurately in the vicinity of the nose than does
the PC—P* function. This result is to be eqmcted since one
of the effects of compressibility already noted is the rotation
of the pressure distribution, which is accounted for by the
PJPi expression but not by the P,-Pi expression.

The inc~eas~~ error which results from increasing the
stream Mach number is shown in figure 14 (b), At
lZO=0.800, the incompressible pressure coefficients about the
fineness ratio 6 prolate spheroid may be corrected with o
fair degree of ‘accuracy asfar forward as the 6-percent station.
h the Mach number increasw, the divergence between the
corrected values and the experimental values in the region
of the nose increasea and, with still greater Mach numb em,
tends to spread toward the center. At Mo= 0.940, which is
supercritical for the prolate spheroid of finenws mtio 6, the
correction formulas are still applicable at the center, sc that
succesdul extrapolation of the linearized theory into tho
supercritical rarige is found to depend .on the section of the
body to which the extrapolation is applied.

As maybe expe@ed, the succem of the linearized theory in
expressing the effects of compressibility decreases os tho
angle of attack increases. The principal reason for this
result is that an angle of attack involves a pressure peak on
the foreport of the top of the body, ‘which moves rearward
when the stream Mach number approaches and exceeds the
critical value for the body. Since the correction formulas
either rotate or translate the incompressible pressure clistri-

‘.bution, they cannot express this change in the shape of the
pressure distribution. This phenomenon is demonstrated
in figure 14 (c), which presents a comparison of the corrected
pressure%oeffici6nt distributions and the experimental dis-
tributions of tbe flow about the prolate spheroid of ilneneaa
ratio 6 at several angles of attack. Even though the shift of
the peak .prewure is not accounted for in the correction for-
mula, the corrected distributions are not seriously in error
at the peaks and the agreement improves over the miclportion
of the body. ,Thus, if some error is permkible, these for-
mulas may be applied for angleaof attack as high os 7° or 8°.

.
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F@me 14 (c) indicates that equation (6) does not correct
as satisfactorily over the central parts of the body at angles
of attack as equation (5). This lack of agreement is due to
the compressibtity effect on the lift forces. It has already
been ahown that the lift forces are not much tiected by
compr-ibilit,y; hence, the increments of the pressure’
coefficients due to compressibility are about the same for
the top and bottom of the body. S&e the absolute valu~
of the pressure -coefficients are less on the bottom of the
body and greater on the top than if the lift forces had not
been present, equation (6) will overcorrect the pressure
coefficients on the ‘top and undercomect those on the bottom.
The same reasoning shows that equation (5), which gives
a constant increment over the entire body, will express the
compressibility effect with an angle of attack better over
the central part of the body to which it applies than will
equation (6).

CONCLUSIONS

The results of the tests made on seversJ bodies of revolu-
tion have shown the following effects of compr-ibility on
three-dimensional flow:

1. In general, the compressibility effect is to increase the
pressured.itlerencesover a body of revolution. The pressure
distributions are approximately rotated about a point near
stream“pressure and the negative-pressure peaks are moved
rearward.

2. The linearized modification of the compressible
potential-flow equation will predict the pressures over the
central part of the body but will not predict the changm in
pr~ure ahead of the stream-pressure point nor will it pm--
diet the change in shape which occurs with supercritical flow.

3. The correction formulas
log B ●

2 ‘l+-
and

(where Pc and P, are “thepressur~ cmfticients for comprca-
sible and incompr~ible flow, respectively, j is the fineness
ratio, and 19=~~ in which it$ is the Mach number)
may be used approximately to correct incompressible-flow
pressures over the central part of streamline thhi bocliea of
revolution; the errors will increase as the supercritical JMach
number is approached and exceeded. Since PJPi rotatca

the pressure distribution, this cctrrection is better to use at

zero angle of attack; however, the form PC—P{ eqmesses

the eilects of angle of attack more correctly and should be
used when an angle of attack other than zero is involved.

4. The effectsof comprasibility areapproximately the same
for various bodies of the same fineness ratio, providod the
body shape satisfiesthe requirements of the linearized theory.

5. Increasing the finenm ratio tends to reduce the effects
of compressibility.

6. The effects of compressibility on an annular protubm-
ance of short chord on a body of revolution tend to follow
more nearly two-dimerisiomil laws than t.hree-dinmnsional
IaWs.

7. jXft forces and moments over the forward part of the
body are relatively unaffected by compreasibilit?.

LANGLEY AERONAUTICAL LABORATORY,

hTATIONAL ADVISORY COMMI~EE FOR AERONAUTICS,

LANGLEY l?IELD,VA., iVouemlwT 6, 1961.
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M,PENDIX A

DERIVATION OF THE EQUATIONS FOR THE COMPRESSIBLE PRESSURE COEFFICIENTS OF THE FLOW ABOUT A PROLATE
SPHEROID

TIM solution of the linearized compressible-flow equation
for a proloto spheroid requires a derivation of the relation
for tlm incompressible velocities about the body. The in-
compressible velocities about a prolate spheroid are defined
by the potential equations given in reference 5. These
equations may be combined and written

(fp=up~Cos CY+A (Cosa)p ; ~ log ~–l)+

B (sina) J-iqF,p=i (+ log ~–~) Cos cd (7)—

The values of the constants A and “B which satisfy the
required boundary conditions are

where ~o’is the value of the coordinate which represents the
body. It may be shown that the eccentricity of the ellipse

r
1’–4bz 1 h

e = —=— w ere 1.and 21Jare the lengths of the major
12 l-o

find minor sxes of the prolate spheroid. Since the fineness

d
ratio j is equal ‘to l/2b, e= 1—~

f
The incomprwsible

velocity components obtained by differentiating the potential

where

.
K.= I ()log ~ —2e

,—

()

2e
log :~: ,—_—

l—e2

()log ~ 2e——
Rb= ~–

l—ez

()
log * – 2e(l–2e~

1—e*

*
—.—G:

With the preceding transformation, the velo~ty equations

(8)

(9)

and u*, v*, and w* are the velocity components in a coordi-
nate svstem dined with the x-ask of the bodv. These

velocities are transformed to the u, v, and w components by the follo& equations:

* *
‘=”— cos a+c sin aUu u

1
U* . *

—. —— L Cosa; u ‘lna+u

t J

(8) become

I

(10}
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These equations may be rewritten moro simply by setting

F= ~~ cos ci-p~ti cm w sin a
,

(12)

The method of correcting for compressibility discussed in
the text can now be approximately applied by increasing the
iiuen= ratio by l/B and reducing the tangent of the angle
of attack by the factor f?. -Thus,

l— 02

and
.

tan ‘a,t=/3tWl a (14)

where e$~and a,~ are the eccentricity and the angle of attack
of the stretched body. Although this stretched body difFers
slightly from the properly stretched body, the approximation
is very close for large fineness ratios and small angles of
attack. It maybe shown that the prop&ly stretched body
is an ellipsoid having three unequal =W; however, under the
present restrictions the two minor axes are very nearly
equal, so that only small errors will be caused by the above
approximation of the stretched body.

The induced. velocities in compressible flow are-now de-
termined by substituting a,, and e,, in equations (11) and

multiplying the resdting veloci~ increments &1, &and
;

by the factors I/@*, l/19, and l/J9, respeotivaly, or

(at=’+w).t+]

G)c=mtt‘
(5),=%)s’

(15)

The pressure coefficients for compressible flow may be com-
puted from the velocities by the following formula:

-{ 1+ %WW37}5-1

Combination of equations (12), (15), and (16) yields

~ ‘P 1 ~ H,,* =, ,5ti, w5h2a,,——. .
{

——.
U2 /3’ Q,’ “

(+’)K1-%%Y+(K’-2wsh2a’+%Y-
ELF., 2()(3,,

— 2&8’ sin2w sin2a,l
1}

(17)

where the subscript ti is used to indicate that tho various
functions so identified are based on the values of e and a
associated with the stretched body. (See em. (13) and (14).)
A simpler first approximation m“ay be ob;ained” by consid:

1“
ering the approximate relation

()PC=–2 y
c

Since
1

(%9.=iwat-lJ
(2 H,tF,t

~- Pc=–p ~–
)

1+X& Sinxw-sin’ a,t ‘. (18)
St

A simpler equation may be develbped for the pressures
over a prolate spheroid at zero angle of attack by consiclor-
ing the method of approximate soures-sink distributions
described in references 2 to 4. In these references, it is
shown that

where t is a coordinate along the major axis of the body and

~’(t) isthe derivative of the cross-sectional area of the body
with respect to t. For a prolate spheroid,

4rWt 4Tb’1’
s’(t)= 7rr’=T-7

from which
d[s(t)] 4Tb2

()
s’(t)=~=~ 1–;

.
Thus

After integration and collection of terms

r

(20)



APPENDIX B

REDUCTION OF PRESSURE-COEFFICIENT FORMULAS TO OBTAIN SIMPLE FUNCTIONS FOR CORRECTING
,

INCOMPRESSIBLE PRESSURE DISTRIBUTIONS FOR THE EFFECTS OF COMPRESSIBILITY

Two functions which may be used to express the relation
between tbe pressure coefficients in compressible and incom-
pressible flow are the ratio and the increment between the
two coefficients P, and Pi; tliat_is, PJPi and Pc–Pt. Both
functions may be expressed in simple equations by substitut-
ing the pressure<oefficient functions for the midpoint of the
body into both tbe ratio function and the increment func-
tion, In order to simplify equation (17) let P=O, sin a,~=f?q,
and I<.,l= I—k,t or k,l=l —Ka,t. Then,

/“1

[–F=p 2k”
–%–K,,, #(l –m(lL,@Y’-2k,J] (21)

. .

I?or small values of 1–$

v’
“=1 ‘F

Also, for large values of j

Kb,t+2

Hence

1

[
Po=p 2k,, –$&4&(l–l?9(w-k, t)j

Since /32=1 at JWO=O

Since 4a’(1 –P’) @’a’-k,,) is small compared with Zkst, the
term containing a maybe neglected; thus

(22)

In order to reduce this equation to previously published
forms (refs. 4 and 8), it is qeces.saryto reduce k:

()log ~ —2e
k= 1–K==

()
log :::

2e
— —~

/p
6’ d the approximate form e,,= 1 ~~ zSubstituting e,t’=l-~ an ——

in this equation gives

k,,= ~’flog z~–h /9-1)
/3’ log 2f–/3~ log p–f+

(23)

and
log 2f – 1

k~=log 2f–ff
(24)

These equations show that both k$J~2and IIf ar~ of order of
magnitude l/f * and, therefore, small with respect to 2.
Hence, the apprmimation (see eq. (22)).

P. 1 k.,
~=p z

b valid.
If equations (23) and (24) are used

following equation is obtained:

(25)

in equation (25), the

P
(

~= 1+
Iog /3

)[
f’–log 2f

1–log 2f f’–p’ (log 2f –log /3)1
(26)

or for large iineness ratios

which may be changed to its equivalent form

(27)

(2s)

Equation (2o) obtained by the source-sink-distribution
method will also reduce to equations (27) and (28) for the
central part of the body.
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